The epigentic fingerprint of asbestos-exposed lung cancer

Validation study

Léon van Kempen Dieter Peeters Dept. of Pathology

Leon.vanKempen@uza.be

Jan van Meerbeeck Dept. of Pulmonology & Thoracic Oncology

Asbestos: A group of 6 naturally occurring, fibrous silicate minerals

Associated cancers: Mesothelioma, lung and ovarian cancer

Most important route of exposure: Inhalation

Uses: Found in roofing, thermal and electrical insulation, cement pipe and sheets, friction materials (such as automobile brakes), and other products

Occupational exposures: construction sector

Environmental exposures: Via buildings that have deteriorating asbestos insulation or have undergone poorly performed asbestos removal

www.carexcanada.ca/

Asbestos-induced lung diseases

- Pleural disease
- Mesothelioma
- Asbestosis
- Lung cancer

Comparable distribution of histological subtypes as in population not exposed to asbestos 45% adenocarcinoma 40% squamous cell carcinoma

5% small cell carcinoma

5% other histological cancer types including sarcoma

- → No histological characteristics that enable distinction of asbestos-related from asbestosunrelated lung cancer.
- \rightarrow Huge (90%) overlap between exposure to asbestos and cigarette smoking.
- \rightarrow KRAS mutations but not other mutations commonly see in non-exposed lung cancers

Country-specific diagnostic criteria for asbestos-related lung cancer include:

- Medical criteria
 - Histological confirmation of malignancy
 - Presence of asbestos-related lung disease: asbetosis or pleural plaques often not documented
 - Quantification of asbestos fibres per g dry lung tissue or in alveolar lavage *Not routinely determined*
- Exposure criteria
 - Documented fibre years
- Latency
- \rightarrow Lack of biomarkers

Asbestos causes reactive oxygen and nitrogen species (ROS, RNS)

Asbestos types	Chemical composition
Chrysotile	$Mg_3[Si_2O_5](OH)_4$
Amosite	Fe ²⁺ ₇ [Si ₈ O ₂₂](OH) ₂
Crocidolite	Na ₂ Fe ³⁺ ₂ Fe ²⁺ ₃ [Si ₈ O ₂₂](OH) ₂
Tremolite	$Ca_2Mg_2[Si_8O_{22}](OH)_2$
Anthophyllite	$(Mg, Fe^{2+})_7[Si_8O_{22}](OH)_2$
Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$

$$Fe^{2+} + O_2 \rightarrow Fe^{3+} + O_2^{-1}$$

$$2O_2^{\bullet-} + 2H^+ \rightarrow H_2O_2 + O_2$$

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^{-1}$$

$$O_2^{\bullet-} + NO \rightarrow ONOO^{-1}$$

Butt and Tazelaar. Atlas of Pulmonary Pathology 2022 Iron stain

Laher (ed.), Systems Biology of Free Radicals and Antioxidants DOI <u>10.1007/978-3-642-30018-9_201</u>

Carcinogenic effect of asbestos

Asbestos causes reactive oxygen and nitrogen species (ROS, RNS)

Asbestos types	Chemical composition
Chrysotile	Mg ₃ [Si ₂ O ₅](OH) ₄
Amosite	Fe ²⁺ ₇ [Si ₈ O ₂₂](OH) ₂
Crocidolite	$Na_2Fe^{3+}{}_2Fe^{2+}{}_3[Si_8O_{22}](OH)_2$
Tremolite	$Ca_2Mg_2[Si_8O_{22}](OH)_2$
Anthophyllite	$(Mg, Fe^{2+})_7[Si_8O_{22}](OH)_2$
Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$

$$Fe^{2+} + O_2 \rightarrow Fe^{3+} + O_2^{-}$$

$$2O_2^{\bullet-} + 2H^+ \rightarrow H_2O_2 + O_2$$

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^{-}$$

$$O_2^{\bullet-} + NO \rightarrow ONOO^{-}$$

Laher (ed.), Systems Biology of Free Radicals and Antioxidants DOI <u>10.1007/978-3-642-30018-9_201</u>

UZ/I

Kietzmann et al Br J Pharmacol 2017, DOI 10.1111/bph.13792

Wu and Nie Current Drug Targets 2015 DOI: 10.2174/1389450116666150113121054

Methylation: Epigenetic regulation of gene expression

UZA'

Tirado-Magallanes et al. Oncotarget 2017 DOI: 10.18632/oncotarget.13562

Methylation: Epigenetic regulation of gene expression

Creates chronic asbestos-induced oxidative stress a fingerprint ? \rightarrow Potential biomarker

DNA methylation profiles in lung cancer (Kettunen et al, 2017)

Discovery set (genome-wide)

14 Lung cancer and adjacent non-tumor lung tissue14 Lung cancer asbestos-exposed and adjacent non-tumor lung tissue6 Control (normal lung, non-cancer)

Validation set (targeted)

40 Lung cancer and adjacent non-tumor lung tissue

51 Lung cancer asbestos-exposed and adjacent non-tumor lung tissue

Differential methylation in asbestos-exposed lung

Discovery set

Top 999 CpG sites that discriminate asbestos-exposed from non-exposed tumors.

 \rightarrow Global hypomethylation.

Validation set :

30 CpG sites were selected for validation 5 sites displayed ~80% reduction in methylation: *RARB, GPR135, MYT1L, TPO, RPTOR* in asbestos-exposed tumors.

Not a black & white difference.

UZA'

Kettunen et al. Int J Cancer 2017 DOI: <u>10.1002/ijc.30897</u>

Validation approach

- Validation of individual sites is time consuming (e.g. PCR). Individual data points.
- Genome-wide validation (e.g. array, genome-wide DNA methylseq) is cost prohibitive

Validation approach

- Validation of individual sites is time consuming (e.g. PCR). Individual data points.
- Genome-wide validation (e.g. array, genome-wide DNA methylseq) is cost prohibitive

Nanopore sequencing

Validation approach

- Validation of individual sites is time consuming (e.g. PCR). Individual data points.
- Genome-wide validation (e.g. array, genome-wide DNA methylseq) is cost prohibitive

Schatz Nat Methods 2017 et al. 10.1038/nmeth.4240

- Validation of individual sites is time consuming (e.g. PCR). Individual data points.
- Genome-wide validation (e.g. array, genome-wide DNA methylseq) is cost prohibitive

Nanopore methyl sequencing

Ultra-fast deep-learned CNS tumour classification during surgery

Transformation of the array-based glioma methylation classifier into a rapid nanopore DNA methylation sequencing test

Vermeulen et al. Nature 2023, 10.1038/s41586-023-06615-2

Validation

Cohort UZA

UZA biobank:

40 asbestos-exposed lung cancers : tumor and adjacent non-involved tissue 40 non-exposed lung cancers : tumor and adjacent non-involved tissue

MethodologyOxford nanopore targeted methyl DNA sequencing at UZA dept of Pathology'Kettunen methylation signature'

Endpoint

Primary
Lung cancer methylation signature associated with asbestos exposure
→ molecular biomarker

Secondary

Evolution of methylation signatures in relation to exposure / fiber load

Léon van Kempen Dieter Peeters

Dept. of Pathology

Jan van Meerbeeck

Dept. of Pulmonology & Thoracic Oncology

Leon.vanKempen@uza.be

